

1,8E-Hexadecadien-10,12,14-triin-7-ol **4**. Colourless oil eluted with *n*-hexane-AcOEt 8:2. IR ν_{max} cm⁻¹: 3500, 3440, 3080, 2935, 2860, 2220, 2180, 1640, 1590, 1380, 1070, 995, 915. UV λ_{max} nm (ϵ): 330 (4800), 308 (6200), 290 (5100), 273 (4000), 258 (4100), 242 (17900), 232 (17200). ¹H NMR δ ppm (*J* Hz): 1.4 (6H, *m*, H-4, 5 and 6), 1.98 (3H, *s*, H-16), 2.01 (2H, *m*, H-3), 4.18 (1H, *dt*, *J* = 5.5, H-7), 4.97 (2H, *m*, H-1), 5.78 (1H, *m*, H-2), 5.82 (1H, *d*, *J* = 15.8, H-9) and 6.35 (1H, *dd*, *J*₁ = 15.8, *J*₂ = 5.5, H-8). ¹³C NMR: see Table 1.

REFERENCES

1. Wrang, P. A. and Lam, J. (1975) *Phytochemistry* **14**, 1027.
2. Bohlmann, F., Burkhart, T. and Zdero, C. (1973) *Naturally Occurring Acetylenes*. Academic Press, London.
3. Bohlmann, F., Fanghänel, L., Kleine, K. M., Kramer, H. D., Mönch, H. and Schuber, J. (1965) *Chem. Ber.* **98**, 2596.
4. Bohlmann, F., Arndt, C., Bornowski, H., Kleine, K. M. and Herbst, P. (1964) *Chem. Ber.* **97**, 1179.
5. Bohlmann, F., Mönch, H. and Niedballa, V. (1966) *Chem. Ber.* **99**, 586.

Phytochemistry, Vol. 27, No. 1, pp. 283-285, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Journals Ltd.

SEQUITERPENES FROM *AGERATINA TOMENTELLA*

NIANBAI FANG* and TOM J. MABRY

The Department of Botany, The University of Texas at Austin, Austin, TX 78713-7640, U.S.A.

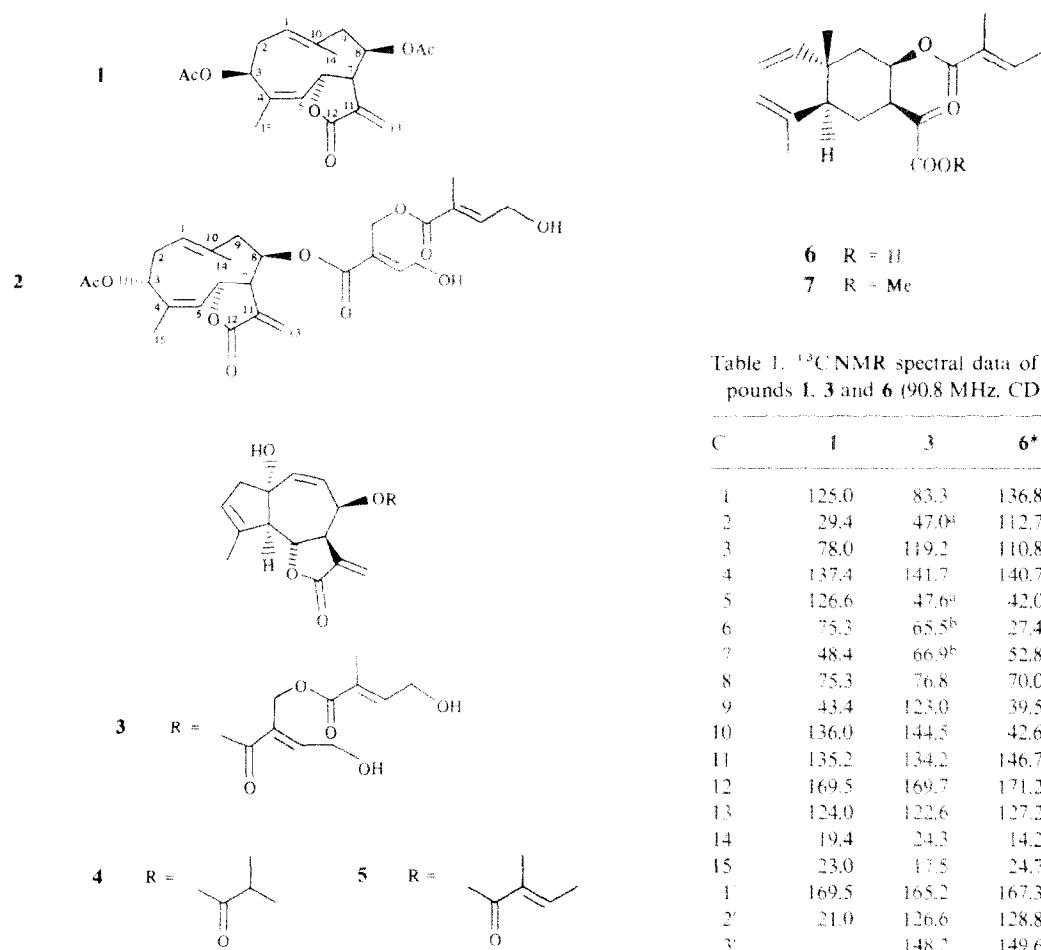
(Revised received 6 April 1987)

Key Word Index—*Ageratina tomentella*; Compositae; Eupatorieae; sesquiterpene lactones; heliangolides; guaianolides; elemanoic acid.

Abstract—An investigation of *Ageratina tomentella* yielded, besides the two known sesquiterpene lactones hiyodorilactone C acetate and 5'-desoxy-3-*epi*-4"-hydroxyprovincialin, two new sesquiterpenes, 11,13-dehydro-8 β -tigloyloxy-eleman-12-oic acid and 8-*epi*-8-[5'-(4"-hydroxytigloyloxy)-tigloyloxy]-rupicolin A. The structures of the new compounds were elucidated by spectroscopic methods.

INTRODUCTION

As a part of our chemosystematic survey of the tribe Eupatorieae [1-7], we investigated the sesquiterpenes of *Ageratina tomentella* (Schrad.) R. M. King & H. Robinson. The results are discussed in this paper.


RESULTS AND DISCUSSION

The dichloromethane extract of leaves of *A. tomentella* afforded the known heliangolide hiyodorilactone C acetate (**1**) [8, 9] as the major constituent. The structure of **1** was easily deduced from its ¹H NMR spectrum. We also include previously unreported ¹³C NMR data for **1** in Table 1. Most of the signals of the second compound (**2**) were nearly identical with those of **1**. One difference between the two compounds appeared to be in the nature of their side chains at C-8. In place of a simple acetate ester at C-8, compound **2** contained a complex C₁₀ diester at C-8. Also, the configuration of the acetate function at C-3 differed in **2** from that of **1**. ¹³C and ¹H NMR data showed that **2** is the known compound 5'-desoxy-3-*epi*-4"-hydroxyprovincialin which was previously isolated from *Piptothrix pubens* [10] and from *P. areolata* [11].

The ¹H NMR spectrum of the new compound **3**, C₂₅H₃₀O₉, showed signals characteristic for the C₁₀ diester 5'-(4"-hydroxytigloyloxy)-tiglate group is a triplet at δ 7.07 (H-3'), a doublet of triplets at 6.64 (H-3''), an AB pair at 4.90 and 4.85 (H-5'a and 5'b), a broadened two proton doublet at 4.30 (H-4''a and 4''b) and another doublet of doublets at 4.46 (H-4'a and H-4'b). Inspection of the other signals in the ¹H NMR spectrum, together with the ¹³C NMR and IR data, indicated that **3** was obviously an α,β -unsaturated lactone (IR band at 1760, 1650 cm⁻¹, ¹³C NMR: δ 124.0 (C-13) and 169.5 (C-12); ¹H NMR: δ 6.29 (1H, *d*, *J* = 3.6 Hz, H-13a) and 5.62 (1H, *d*, *J* = 3.2 Hz, H-13b). Moreover, the ¹H NMR spectrum of **3**, in conjunction with systematic spin decoupling, suggested that **3** was a derivative of rupicolin A (Table 2) [12]. Comparison of the ¹H NMR spectrum of **3** (Table 2) with those of two other derivatives of rupicolin A, 8-*epi*-8-isobutyryl rupicolin A (**4**) [13] and 8-*epi*-8-tiglyl rupicolin A (**5**) [14], showed significant differences among **3**, **4** and **5**, only for the signals due to the side chains at C-8. All other spectral data (see Experimental) supported the assignment of **3** as the new compound, 8-*epi*-8-[5'-(4"-hydroxytigloyloxy)-tigloyloxy]-rupicolin A.

The CIMS of **6** exhibited a [M + 1]⁺ at *m/z* 333 (6%), suggesting a molecular formula of C₂₀H₂₈O₄. The base peak at *m/z* 233 (232 + 1) (C₁₅H₂₀O₂) was formed by loss of the side chain ester + H. This was identified as a tiglate

* Permanent address: The Hubei College of Chinese Traditional Medicine, Wuhan, The People's Republic of China.

group on the basis of the characteristic ^1H NMR signals [a one-proton broad quartet at δ 6.79 (H-3'), a three-proton vinyl methyl broad doublet at 1.78 (H-4') and a three-proton vinyl methyl broad singlet at 1.80 (H-5')]. The ^1H NMR signals of the skeleton of compound **6** were clearly interpretable in terms of an elemene-type sesquiterpene: a doublet of doublets at δ 5.79 (H-1), a doublet at 4.92 (H-2a), a doublet at 4.90 (H-2b), a broad singlet at 4.88 (H-3a), a broad singlet at 4.69 (H-3b), a three-proton singlet at 1.11 (H-14), and a broad singlet at 1.76 (H-15). A broad singlet at δ 5.35 supported the presence of the side chain at C-8. All spectral findings (^{13}C NMR, ^1H NMR, EIMS, CIMS and IR) established **6** to be 11,13-dehydro-8 β -tigloyloxy-eleman-12-oic acid. The final confirmation of the structure and configuration of **6** was provided by comparison of the ^1H NMR spectra of **6** and known compound **7** [15] (Table 2).

EXPERIMENTAL

Plant material. Leaves, flower and heads of *Ageratina tomentella* (1.6 kg dry wt) were collected on 6 October 1984, in the state of Oaxaca, Mexico, 6.9 miles south of the border with Puebla along highway 190 from Huajuapan to Izucar, from a limestone hillside where it occurred with *Acacia*. A voucher specimen (Sundberg and Lavin no. 3035) is deposited in the Plant Resources Center at the University of Texas at Austin.

Table 1. ^{13}C NMR spectral data of compounds **1**, **3** and **6** (90.8 MHz, CDCl_3)

C	1	3	6*
1	125.0	83.3	136.8‡
2	29.4	47.0§	112.7†
3	78.0	119.2	110.8§
4	137.4	141.7	140.7‡
5	126.6	47.6§	42.0‡
6	75.3	65.5§	27.4§
7	48.4	66.9§	52.8‡
8	75.3	76.8	70.0‡
9	43.4	123.0	39.5†
10	136.0	144.5	42.6§
11	135.2	134.2	146.7§
12	169.5	169.7	171.2‡
13	124.0	122.6	127.2§
14	19.4	24.3	14.2‡
15	23.0	13.5	24.7‡
1'	169.5	165.2	167.3§
2'	21.0	126.6	128.8§
3'		148.2	149.6§
4'		59.4	19.1‡
5'		58.0	12.1‡
1"	169.1	167.5	
2"	20.7	127.3	
3"		141.7	
4"		59.0	
5"		12.2	

§,§ Assignments interchangeable.

* In attached proton test experiment.

† Carbons are quarternary or methylene carbons.

‡ Carbons are methyl or methine carbons.

Extraction and isolation. Ground, dried plant material was extracted with CH_2Cl_2 . The extract was coned to a syrup (126.8 g), then taken up in MeOH - Me_2CO (3:2) and kept in a refrigerator overnight. After filtering to remove the ppt., the resulting soln was then evapd to yield a brown syrup. The syrup was loaded onto a silica gel column, which was eluted with a hexane-EtOAc gradient solvent system. Fractions were further purified by CC over Sephadex LH-20 eluted by hexane- CH_2Cl_2 - MeOH (7:4:1) and prep. TLC (silica gel) developed with hexane-EtOAc (4:1, 7:3 or 3:2).

8-epi-8-[5-(4-Hydroxytigloyloxy)-tigloyloxy]-rupicolin **A** (3). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3420 (OH, broad), 1760 (γ -lactone), 1700 (unsaturated ester), 1650 (double bonds), 1140 (tertiary alcohol); EIMS (probe) m/z (rel. int.) 244 (100) [$\text{M}-(\text{side chain} + \text{H})$]⁺.

Table 2. ¹H NMR spectral data of compounds 3 and 6 (360 MHz, CDCl₃)

H	3	6
1		5.79 <i>dd</i> (<i>J</i> = 10.8, 17.2)
2 ^a	2.65 <i>m</i> (2H)	4.92 <i>d</i> (<i>J</i> = 10.8)
2b		4.90 <i>d</i> (<i>J</i> = 17.2)
3a	5.51-5.57 <i>m</i>	4.88 <i>br s</i>
3b		4.69 <i>br s</i>
5	2.79 <i>brd</i> (<i>d</i> = 11)	2.18 <i>m</i>
6a	4.42 <i>dd</i> (<i>J</i> = 11, 9)	2.10 <i>m</i>
6b		1.44 m
7	3.45 <i>dddd</i> (<i>J</i> = 9,3,6,3.2, 2.8)	2.91 <i>br d</i> (<i>J</i> = 8.9)
8	5.97 <i>dd</i> (<i>J</i> = 6.4, 2.8)	5.35 <i>br s</i>
9a, b	5.57 <i>dd</i> (1H, <i>J</i> = 6.4, 1.5)	1.77 <i>m</i>
13a	6.29 <i>d</i> (<i>J</i> = 3.6)	6.39 <i>br s</i>
13b	5.62 <i>d</i> (<i>J</i> = 3.2)	5.69 <i>br s</i>
14	1.97 <i>br s</i> (3H)	1.11 <i>s</i> (3H)
15	1.97 <i>br s</i> (3H)	1.76 <i>br s</i> (3H)
3'	7.07 <i>t</i> (<i>a</i> = 5.8)	6.79 <i>br q</i> (<i>J</i> = 6.3)
4'a, b	4.46 <i>dd</i> (<i>J</i> = 5.8, 15)	1.78 <i>br d</i> (3H, <i>J</i> = 6.3)
5'a	4.90 <i>d</i> (<i>J</i> = 13)	
5'b	4.85 <i>d</i> (<i>J</i> = 13)	1.80 <i>br s</i> (3H)
3"	6.64 <i>dt</i> (<i>J</i> = 1.5, 6.0)	
4" a, b	4.30 <i>br d</i> (<i>J</i> = 6.0)	
5"	1.76 <i>d</i> (3H, <i>d</i> = 1.5)	

226 (33) [M-(side chain+H)-H₂O] +, 201 (11) [M-(side chain + H) - Me - CO] +, 198 (7) [M - (side chain + H) - H₂O - CO] +.

11,13-Dehydro-8-~-tigloyloxy-eleman-12-oic acid (6). IR $\nu_{\text{cm}^{-1}}$ 3300-2800, 2650, 1720 (CO₂R), 1690 (C=CCO₂H), 1640 (C=C), 1620 (C=C); CIMS (methane, 0.5 torr,

probe) *m/z* (rel. int.): 333 (6) [M + 1] +, 233 (100) [M + 1 -(side chain + H)] +, 83 (33) [C₄H₇CO, tiglate acylium ion] +.

Acknowledgements--This work was supported by grants from the National Science Foundation (BSR-8402017) and the Robert A. Welch Foundation (F-130). The authors thank Scott Sundberg and Matt Lavin for collecting and identifying the plant material.

REFERENCES

1. Yu, S., Gage, D. A., Fang, N. and Mabry, T. J. (1986) *J. Nat. Prod.* **49**, 181.
2. Yu, S., Norris, J., Fang, N. and Mabry, T. J. (1986) *J. Nat. Prod.* **49**, 553.
3. Yu, S., Fang, N. and Mabry, T. J. (1986) *Rev. Latinoam. Quire.* **18**, 20.
4. Fang, N., Yu, S. and Mabry, T. J. (1986) *Phytochemistry* **25**, 2684.
5. Fang, N. and Mabry, T. J. (1986) *J. Nat. Prod.* **49**, 737.
6. Fang, N., Luengo, D. H. and Mabry, T. J. (1986) *Phytochemistry* **25**, 2665.
7. Fang, N., Gage, D. A. and Mabry, T. J. (1987) *Phytochemistry* (in press).
8. Takeyoshi, T., Hirosumi, E., Tomoko, I. and Tatsushi, M. (1978) *Chem. Letters* 1345.
9. Begley, M. J., Pattenden, G., Mabry, T. J., Miyacado, M. and Yoshioka, H. (1975) *Tetrahedron Letters* 1105.
10. Miski, M., Gage, D. A. and Mabry, T. J. (1987) (in press).
11. Gage, D. A., Miski, M. and Mabry, T. J. (1987) *Phytochemistry* (in press).
12. Irwin, M. A. and Geissman, T. A. (1973) *Phytochemistry* **12**, 863.
13. Ober, A. G., Quijano, L., Urbatsch, L. E. and Fischer, N. H. (1984) *Phytochemistry* **23**, 1289.
14. Ober, A. G., Urbatsch, L. E. and Fischer, N. H. (1985) *Phytochemistry* **24**, 795.
15. Bohlmann, F., Jakupovic, J. and Schuster, A. (1983) *Phytochemistry* **22**, 1637.